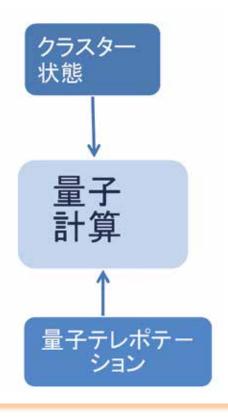
電子メディアエ学科 量子数理研究室

教授 大嶋

■産学連携の可能性 理論的解析

【主な研究分野】


量子情報理論

【主な研究内容・連携のシーズなど】

- 1. クラスター状態量子計算
- 2. 量子テレポテーション

【主な研究成果・特許など】

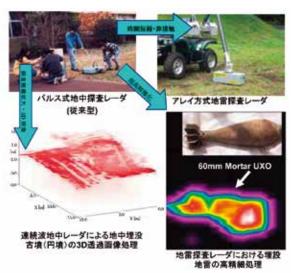
Lower Bounds of Success Probabilities for High-Fidelity Approach in KLM Scheme, International Journal of Quantum Information Vol16. No. 4 (May, 2018) 185033

5 その他

電子メディアエ学科 地中レーダに関する研究

教授 宫澤 良行

- ■産学連携の可能性 1. 光を透過させない 媒質中の探査
- 2. コンクリート壁の 反対側や瓦礫中の 生体の探査


【主な研究分野】

- 1. 遺跡探査など目的とした
- 地中探査レーダの開発 コンクリート内部の3D 映像化を目的としたレ ダの開発
- 3. レーダの距離分解能・ 方位分解能の向上

【主な研究内容・

連携のシーズなど】

土やコンクリート等の光を 透過しない物質中の金属や物 質の反対側の生体の計測に関 する研究を行っています。そ のため、電磁波を用いた計測 技術および計測対象の画像化技術を得意としています。

【主な研究成果・特許など】

- 1. Y. Tomizawa, I.Arai and S.Gotoh, Development of an Array Antenna Landmine Detection Radar System, Anti-personal Landmine Detection for Humanitarian Demining, Springer-Verlag London Ltd., pp.45-62,
- 2. Y. Tomizawa, I.Arai, M.Hirose, T.Suzuki and T.Ohhashi: "Archaeological Survey Using Pulse Compression Subsurface Radar," Archaeological Prospection, vol.4, no.4, pp.241-247, December 2000.

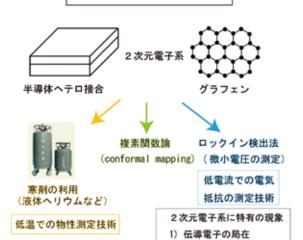
3 材料・エネルギー分野

電子メディアエ学科 半導体の電気伝導に関する研究

^{教授} 平井 宏

- ■産学連携の可能性
- 1. 寒剤を使った物性 測定に関わること
- 2. ロックイン検出を使用した電気抵抗の測定に関すること

【主な研究分野】


- AlGaAs/GaAsヘテロ接合に関する研究
- 2. グラフェンの電気伝導 に関する研究
- 3. トポロジカル絶縁体に 関する研究

【主な研究内容・

連携のシーズなど】

- 1. 液体窒素、液体ヘリウムなどの寒剤を使用した固体の低温での物性の測定
- 2. 低電流でのロックイン 検出法を用いた半導体 デバイスの特性評価
- 3. 複素関数論を使用した 強磁場下での固体中の 電流分布の解析的な計 質

半導体の低温での電気抵抗の測定

【主な研究成果・特許など】

1. H. Hirai et al. Journal of the physical society of Japan, vol.84, 034708 (2015)

2) 量子ホール効果

2. H.Hirai et al. Journal of the physical society of Japan, vol.89, 114701(2020)

3 材料・エネルギー分野

電子メディアエ学科 応用物理研究室

^{教授} **五十嵐 睦夫**

■産学連携の可能性

- 1. 核磁気共鳴
- 2. 物性実験
- 3. 高周波測定

【主な研究分野】

- 1. 核磁気共鳴分光法による原子局所運動 の研究
- 2. アルカリ金属吸着ゼオライトの電子物 性研究
- 3. 物性実験

【主な研究内容・連携のシーズなど】

- 1. s 電子系における電子物性において未 開拓な現象の発掘
- 2. 極低温から融点近傍に至る幅広い温度 領域における結晶格子中原子の不規則 運動の解明

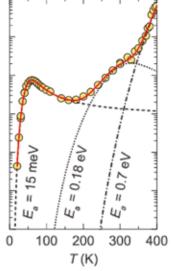


図 LSX型ゼオライトにおける カチオン運動の活性化 エネルギー分布

【主な研究成果・特許など】

- 1. M.Igarashi, et al., J.Phys.Soc.Jpn.86, 075005 (2017).
- 2. M.Igarashi, et al., Sci.Rep.6, 18682 (2016).
- 3. M.Igarashi, et al., Phys.Rev.B 87, 0751 (2013).
- 4. M.Igarashi, et al., J.Phys.Chem.Solids 71, 638 (2010).

ロボット・制御分野 2

電子メディアエ学科 可視光通信・画像処理の研究

教授 佐々木 信雄

- ■産学連携の可能性
- 1. FPGA、マイコン、 アナログ回路を用い たハードウェア開発
- 2. 画像処理ソフトウェ ア開発
- 3. 回路設計と画像処理 を融合したシステム の開発

【主な研究分野】

- 1. 可視光通信
- 2. 画像処理による測距
- 3. 画像処理による物体認識

【主な研究内容・

連携のシーズなど】

- 1. FPGAによる可視光通信 システムの設計・試作お よびその性能評価
- 2. OpenCVによる車間距離 測定アプリの開発
- 3. OpenCVによる物体の認 識システムの開発

【主な研究成果・特許など】

- 1. N, Sasaki, S. Tomaru and S. Nakamura, Proc. ICCAS 2017, pp.994 – 997.
- 2. N. Sasaki, Proc. GCCE 2017, pp.52-53.
- 3. N. Sasaki, H. Shimada, S. Shimada and H. Kobayashi, Proc. ICCAS 2016, pp. 1362-1365.
- 4. N. Sasaki, N. lijima and D. Uchiyama, Proc. ICCAS 2015, pp. 666-670.

光デバイス

LED・フォトダイオード・イメージセンサ

- ・照明・信号機 → 送信デバイス
- ・スマホ・パソコン → 受信デバイス

既存デバイスを用いた通信・測距の実現

①可視光通信:

- ・外乱光に対するロバスト性の向上
- ・多重化による高速化
- ②画像処理による車間距離測定
 - ・拡大・縮小、回転に強い物体認識
 - ・天候、影などの外乱に対するロバスト 性の向上

その他 5

アプリ開発に関する研究 電子メディア工学科

准教授 布施川 秀紀

- ■産学連携の可能性
- 1. スマホアプリ開発
- 2. Webアプリ開発

【主な研究分野】

- 1. スマホアプリの開発
- 2. Webアプリの開発

【主な研究内容・

連携のシーズなど】

- 1. スマホにはカメラや各種 センサがついており、こ れらを使ったアプリの可 能性は無限大です。カメ ラやジャイロなど使って、 距離や長さの計測等のア プリを開発しています。
- 2. HTMLやPHPを 使 っ た Webアプリでサーバ内の データベースにアクセス することにより、インタ ラクティブなWebアプリ になります。小規模な顧 客管理、在庫管理などを 自前で開発できるかもし れません。

【主な研究成果・特許など】

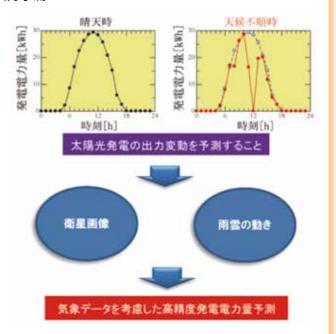
E科学生の欠席·遅刻情報の共有システムの試作, 群馬高専レビュー第36号, pp5-7, 2017.

材料・エネルギー分野 3

電子メディアエ学科 電力システムに関する研究

准教授 中山 和夫

- ■産学連携の可能性
- 1. 太陽光発電に関す ること
- 2. 再生可能エネル ギーに関すること


【主な研究分野】

- 1. 太陽光・風力発電の出力予測
- 2. 再生可能エネルギー 利用拡大に向けた最 適システムの検討

【主な研究内容・

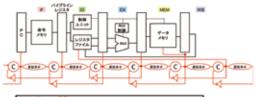
連携のシーズなど】

太陽光発電や風力発電 などの分散型電源が導入 された、次世代自家用受 配電設備の省エネルギー 性と信頼性の相反する両 面の評価と、最適なシス テム・運用手法の検討

ロボット・制御分野

電子メディアエ学科 システムの高信頼化に関する研究

准教授 松本 敦


- ■産学連携の可能性
- 1. デジタル回路を含 むシステム構築に 関すること
- 2. 小~中規模ソフト ウェア実装に関す ること


【主な研究分野】

- 1. 非同期回路に関する研究
- 2. 同期・非同期マイクロコント ローラの設計とFPGA上での 動作検証
- 関連ソフトウェア開発(画像 処理等)

【主な研究内容・連携のシーズなど】

- 1. ハンドシェイク信号で動作制 御を行う非同期回路の設計、 シミュレーションによる評価、 FPGAによる動作実証
- 2. RISC-V命令セットに基づく専用マイクロコントローラのハードウェア記述言語レベル での設計と評価
- 3. OpenCVをベースにした画像 処理システムの構築とその ハードウェア実装の検討

上段:研究室で設計した非同期マイクロコント ローラのブロック図(赤線が非同期制御回路) 下段:OpenCVペースの画像処理システムの出力 (障害物存在下での矩形の移動速度検出)

- 【主な研究成果・特許など】 1. 東データ方式に基づく非同期回路の遅延自動設定手法の提案,情報処理学会総合大会,1, 179-180(2016)
- 2. High-Throughput Compact Delay-Insensitive Asynchronous NoC Router. IEEE Computer, 63, 3, 637-649(2014)
- 3. Accurate Asynchronous Network-on-Chip Simulation Based on a Delay-Aware Model (single chapter.), (共著), (2011)

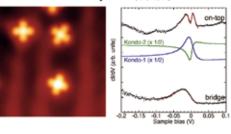
3 材料・エネルギー分野

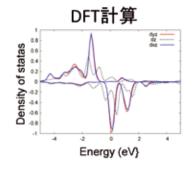
電子メディアエ学科 固体表面における分子物性計測

^{助教} **塚原 規志**

- ■産学連携の可能性
- 1. 走査トンネル顕微 鏡
- 2. 密度汎関数理論計算

【主な研究分野】


- 1. 表面科学
- 2. 分子物性
- 3. 走査トンネル顕微鏡(STM)


【主な研究内容・

連携のシーズなど】

- 1. STMを用いた吸着分子の電 気伝導計測により、分子振 動や分子スピンなどの情報 を単一分子レベルで検出す る。
- 2. 密度汎関数理論(DFT)計算 により、吸着分子の電子状態を計算する。
- 3. 表面吸着で生じる特異な分子物性や、化学反応によって生じる特異な有機薄膜を探索し、新規機能性有機材料の発見を目的とする。

STM/STS計測

【主な研究成果・特許など】

- 1. R. Hiraoka et al., Nature Commun. 8, 16012 (2017).
- 2. E. Minamitani et al., Phys. Rev. Lett. 109, 086602 (2012).
- 3. N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009).

3 材料・エネルギー分野、5 その他

電子メディアエ学科 プラズマを用いたガス分析

^{助教} **市村 和也**

- ■産学連携の可能性
- 1. ガス成分の分析
- 2. 材料へのイオン・ 電子照射
- 3. 真空容器などへの ガス導入・制御

【主な研究分野】

- 1. プラズマ核融合炉実現に向けた新型電離真空計の開発
- 2. プラズマのエネルギー・温度・密度の計測及び評価
- 3. 高エネルギープラズマによる熱流束の緩和およびエネルギー回収

【主な研究内容・連携のシーズなど】

- 1. プラズマ放電によりガスを電離させることで、周辺のガスを計測し成分を分析する。
- 2. イオンや電子を電場や磁場により捕集・分析し、プラズマの温度や密度を調べる。
- 3. 高エネルギープラズマにガスを入射しエネルギーを発散させる、または電力としてエネルギーを回収する。

【主な研究成果・特許など】

- Analysis on the Sensitivity of the ASDEX Type Ionization Gauge in Mixed Radiator Gases of Divertor Simulators, K.Ichimura, et., al., (2019)
- 2. Recent Advancement of Research on Plasma Direct Energy Conversion, H.Takeno, K.Ichimura et., al., (2019)
- 3. Recent Results of Divertor Simulation Experiments Using D-Module in the GAMMA 10/PDX Tandem Mirror, Y.Nakashima, K.Ichimura et., al.(2015)